猫眼影戏
猫眼影戏
燕飞红
手机检察
猫眼影戏记者 肖北发 报道P6F9A2Y5R3B1T0V4X8W
选自oxen.ai 作者:Greg Schoeninger 编译:陈陈、泽南 RTX 3080 移动版能训练哪种大模型?本文为那些 GPU 资源有限时使用 GRPO 训练的开发者提供了名贵的指导。 自 DeepSeek-R1 宣布以来,群组相对战略优化(GRPO)因其有效性和易于训练而成为大型语言模型强化学习的热门话题。R1 论文展示了如何使用 GRPO 从遵循 LLM(DeepSeek-v3)的基本指令转变为推理模型(DeepSeek-R1)。 GRPO 是一种在线学习算法(online learning algorithm),它通过使用训练历程中由训练模型自身生成的数据来进行迭代革新。GRPO 的目标是最大化生成补全(completions)的优势函数(advantage),同时确保模型坚持在参考战略(reference policy)四周。 本文的目的是帮你节省一些时间,让你凭据硬件预算选择合适的模型巨细。在开始微调时,你必须做出的重要决定是选择模型巨细,以及你是执行完全微调照旧参数高效微调(PEFT)。 文章作者来自 AI 公司 Oxen.ai 的 CEO Greg Schoeninger。 原文链接:https://www.oxen.ai/blog/grpo-vram-requirements-for-the-gpu-poor 作者体现,他发明 trl 库中已经有一个易于使用的 GRPO 实现,便立刻开始了训练,使用的硬件是配备了 16GB 显存的 Nvidia GeForce RTX 3080 的小型条记本电脑。正如各人可能遇到的问题,作者发明示例代码中的参数设置导致了一个巨大的显存缺乏(OOM,out of memory )过失。 torchOutOfMemoryErrorCUDAoutof memoryTriedto allocate1.90GiBGPU0has a total capacity ofGiBof which1.28GiBisfreeIncludingnonPyTorchmemorythisprocess hasGiBmemoryinuseOfthe allocated memoryGiBisallocatedbyPyTorchand2.41GiBisreservedbyPyTorchbut unallocatedIfreserved but unallocated memoryislargetrysetting PYTORCH_CUDA_ALLOC_CONFexpandable_segmentsTrueto avoid fragmentationSeedocumentationforMemoryManagement//pytorch.org/docs/stable/notes/cuda.html#environment-variables) 实际使用情况 作者体现,他们进行了一系列实验,以确定训练种种巨细的模型所需的显存(VRAM)要求。参数数量从 5 亿到 140 亿不等,他们比较了权重的完全微调与参数高效微调(使用 LoRA),所有训练运行都在英伟达 H100 上完成,因此这里的 OOM 意味着 >80GB 的 VRAM。 在表格中,你可以找到 GSM8K 数据集上训练的前 100 步中的峰值内存使用情况。用于实验的模型是: 所有实验均使用 Shadeform 的 GPU 市场完成,因此每次实验只需要花费几美元 H100。 实验结果标明,内存需求随着模型巨细和训练方法的差别而显著变革。例如,全参数微调比 PEFT 需要更多的内存。 为什么 GRPO 对内存需求较高 这要从 GRPO 的原理说起,这是它的流程图。 GRPO 对内存需求较高的原因在于,其内部涉及多个模型,并且在训练数据中每个盘问会爆发多个输出。上图中的战略模型、参考模型和奖励模型各自都是一个需要进行推理的 LLM。(尽管从技术上讲,奖励模型可能不需要参数化,可以只是一个 Python 函数或正则表达式,但不影响 GRPO 对内存的高需求。) 为什么 8-Bit 优化和梯度检查点有助于减少内存占用? 通常来讲,训练一个大型语言模型需要在内存中存储三种主要类型的信息:模型参数、模型学习所需的梯度、优化器的跟踪数据。 对上述内容我们可以这样理解:如果模型的参数占用了 X 的空间,那么梯度也会占用约莫相同的空间。然后,像 AdamW 这样的优化器需要更多的空间,因为它们就像一个纪录员,跟踪最近的更新历史,以便更好地决定未来的优化。 为了减轻这种内存担负,通常接纳两种技术: 首先,可以使用像 AdamW 这样的 8-bit 优化器版本,它们能更高效地存储跟踪数据,同时仍坚持良好的性能 —— 类似于压缩照片可以节省空间,同时保存大部分图像质量;其次,使用梯度检查点技术,这就像在训练历程中拍摄快照,而不是纪录所有内容。虽然这会使逊з度减慢约 20-30%,但它显著减少了内存使用。 结合这些技术,纵然对 GPU 资源有限的人来说,也能够训练更大的模型。 代码示例 像 trl 这样的库已经开始支持 GRPO,使得微调由 transformers 组成的 LLM 变得很是简单。代码也很是简洁,只需将训练器替换为 GRPOTrainer 并界说一些奖励即可。GRPO 的最小代码量约莫只有 99 行,如果你使用的是像 meta-llama/Llama-3.2-1B-Instruct 这样的小型模型和像 openai/GSM8K 这样的数据集,可以非?焖俚仄舳。 trl 项目地点:https://github.com/huggingface/trl?ref=ghost.oxen.ai importtorchfromdatasetsimportload_datasetDatasetfromtransformersimportAutoTokenizerAutoModelForCausalLMfromtrlimportGRPOConfigGRPOTrainerimportreSYSTEM_PROMPTRespond in the following format:defextract_hash_answertextstrstrNoneif"####"notintextreturnNonereturntextsplit"####"1stripdefget_gsm8k_questionssplit"train"Datasetdataload_dataset'openai/gsm8k''main'splitdatadatamaplambda'prompt''role''system''content'SYSTEM_PROMPT},'role''user''content''question'],'answer'extract_hash_answer'answer'returndatadefextract_xml_answertextstrstranswertextsplit1answeranswersplit""0returnanswerstripdefformat_reward_funccompletionskwargslistfloat"""Reward function that checks if the completion has a specific format."""patternr"^\n\n$"\n.*?\n\n.*?\nresponsescompletion0"content"forcompletionincompletionsmatchesrematchpatternrforrinresponsesreturn0.5ifmatchelse0.0formatchinmatchesdefaccuracy_reward_funcpromptscompletionsanswerkwargslistfloat"""Reward function that extracts the answer from the xml tags and compares it to the correct answer."""responsescompletion0'content'forcompletionincompletionsextracted_responsesextract_xml_answerrforrinresponsesreturn2.0ifraelse0.0forrainzipextracted_responsesanswerdefmaindatasetget_gsm8k_questionsmodel_name"meta-llama/Llama-3.2-1B-Instruct"modelAutoModelForCausalLMfrom_pretrainedmodel_nametorch_dtypetorchbfloat16attn_implementation"flash_attention_2"device_mapNoneto"cuda"tokenizerAutoTokenizerfrom_pretrainedmodel_nametokenizerpad_tokentokenizereos_tokentraining_argsGRPOConfigoutput_dir"output"learning_rate5e-6adam_beta10.9adam_beta20.99weight_decay0.1warmup_ratio0.1lr_scheduler_type'cosine'logging_steps1bf16Trueper_device_train_batch_size1gradient_accumulation_steps4num_generations4max_prompt_length256max_completion_length786num_train_epochs1save_steps100save_total_limit1max_grad_norm0.1log_on_each_nodeFalsetrainerGRPOTrainermodelmodelprocessing_classtokenizerreward_funcsformat_reward_funcaccuracy_reward_func],argstraining_argstrain_datasetdatasettrainertrainif__name__"__main__"main Num Generations 有什么用 Num Generations 是一个超参数,它决定了我们将在训练数据中对每个盘问采样几多个补全。然而,这会显著增加 VRAM 的消耗。 目前有一个开放的 GitHub 问题,可能会资助解决内存瓶颈问题,可以参考如下链接 地点:https://github.com/huggingface/trl/issues/2709?ref=ghost.oxen.ai 关于 num_completions=8,16,64 (DeepSeekMath 论文使用的 64),作者体现,不必再次盘算上述所有值,而是使用了 1B 参数模型进行了测试,以显示内存增长。不过,作者照旧建议各人在内存瓶颈获得修复之前使用 num_generations=4,也能获得不错的性能。 影响 VRAM 的一些因素 要对所有影响显存(VRAM)使用的因素进行全面的超参数验证,需要进行大宗的实验。简单起见,这里只指出了需要注意的设置,以及实验中使用的具体数值。 batch_size=1,由于 GRPO 为每个盘问生成多个响应,batch size 会迅速失控。gradient_accumulation_steps=4,优化器是另一个占用大宗 VRAM 的地方。此参数决定了我们将存储的梯度以资助优化器进行其「爬山」历程。num_completions=4,DeepSeekMath 论文中使用了 64。这完全凌驾了有些人的盘算预算。max_prompt_length=256,如果你想训练模型拥有更大上下文的推理能力,将不得不增加 VRAM。GSM8K 的提示相对较小,适合此测试。max_completion_length=786,同样,由于盘算注意力的内存有限,推理链在这里受到限制。上下文或生成的 token 越多,需要的内存就越大。LoRA target_modules=["q_proj", "k_proj", "o_proj", "up_proj", "down_proj"] 在这方面可以实验几种差别的迭代。target_modules="all-linear" 是一种流行的方法,可以从你的 LoRA 中挤出最多的性能(就准确性而言)。 对 VRAM 使用的大概估算 如果你正在使用 FP16 精度进行训练,以下是一些简单的估算要领,可以资助你了解内存主要用在了哪些地方: 模型参数:每个参数占用 2 字节。参考模型参数:每个参数占用 2 字节。梯度:每个参数占用 2 字节。优化器状态:每个参数占用 8 字节。8 位优化器:每个参数占用 4 字节。PEFT:有助于减少梯度的显存占用。 最后是关于准确率的。作者完成了一个 10 亿参数的 Llama 3.2 模型的完整训练。在应用 GRPO 之前,该模型在保存测试集上抵达了约 19% 的准确率,而在经过一个训练周期后,模型的准确率飙升至约 40.5%。虽然这离 SOTA 水平还差得很远,但这展示了 GRPO 的强大潜力。
??时事1:水野朝阳在线观看先锋影音
??02月14日,中国航运加速向“绿” 苏州港至外高桥港将开通绿色智慧示范航线,
第一、勤奋学习。掌握牢固的文化科学知识,掌握探究知识的本事,为我们今后的生长打下扎实的基础。我校新的课堂学习模式已经全面展开,它将使你的学习由被动变为主动,使你真正成为学习的主人。在新的学期里,希望同学们在老师的教育下,能主动积极地加入学习,要铭记"勤奋、健康、上进"的学风,养成"乐于学习、勤于学习、善于思考、勇于探索"的学习品质和良好的学习习惯,积极探讨好的学习要领,自主学习,刻苦钻研,做课堂的主人,做时间的主人,做学习的主人,全面提高学习结果。
,一区二区免费视频。??02月14日,国际最新研发提升外骨骼性能模拟学习框架 或助义肢等广泛应用,
今天能够加入公司组织召开的“班组建设”发动会并进行谈话,我感应莫大的荣幸和鼓舞,特别是在聆听了《实施》后,给我的感伤很大,深受教育和启发,让我认识到了开展“班组建设”的须要性和重要意义,进一步坚定了信心和决心。
,天美果冻仙踪,先锋影音av 资源站,用棒棒糖ss原视频。??时事2:白色白色免费视频
??02月14日,中国国防部:美国对台军售一向恶名昭著,
这看的众人大惊,好强的宝术!
,日本 jizz,一区二区三区性爱一级片在线播放,男生女生一起滑轮鞋免费大全视频。??02月14日,青海省人民检察院依法对汪山泉决定逮捕,
天时人事日相催,冬至阳生春又来。在这雪花飞扬,傲雪凌霜,孕育着新希望的美好日子里,我银行支行隆重开业了,这是我县经济金融生活中的一件大事,也更是我县事业生长的重要里程碑。我谨代表银行县支行,向莅临开业庆典的列位领导和嘉宾体现最热烈的接待!对支持体贴我县事业革新与生长的各级领导和社会各界人士体现诚挚的谢意!
,甜杏视频app高清破解版下载,抖淫app怎么打不开,色开心播播深爱五月在线视频。??时事3:乐仔飞机截图
??02月14日,中俄美术联盟首届大会在哈尔滨举行 高校艺术作品展诠释两国风情,
“石村的朋友恕罪,我们现在需要大宗的猛兽,这次的猎物就让给我们吧,以后会有厚报。”狈村的一其中年人出面喊道,声音很嘹亮。
,国产秀色在线www免费观看,欧美体内she精视频gay,www.九九视频网。??02月14日,宁夏姚磨村入选2024世界旅游联盟——旅游助力乡村振兴案例,
祭灵心底冒出一股寒意,它没有料到小不点这般难缠,最不可思议的是,竟掌握有太古遗种狻猊的宝术,光雾与雷电共识,甚是可怕。
,野花社区永久网址,强奷漂亮的女邻居中文字幕,白洁高义张敏。??时事4:亚洲福利视频导航网站
??02月14日,音乐剧《飞天》获第十七届精神文明建设“五个一工程”优秀作品奖,
一、防火:
,忘忧草影视www日本社区,老人头晕快速解决方法,裸美女app。??02月14日,2024人工智能十大前沿技术趋势展望发布, 2023年7月,中共中央总书记、国家主席、中央军委主席习近平在四川考察时指出,四川要发挥高校和科研机构众多、立异人才集聚的优势和工业体系较为完善、工业基础雄厚的优势,在科技立异和科技结果转化上同时发力。,97国产最新免费视频公开,男警察被3O㎝肉粗暴进入小说,美女1819xxxx。
责编:川内三大
审核:吴承烈
责编:贾拉克·莱姆·阿迪卡里
Copyright (C) 2001-2025 Dzwww 鲁ICP备09023866号-1